
A Tiny Example-Based Procedural Model for Real-Time Glinty Appearance
Rendering

Youxin Xing
Shandong University

China
youxinxing@mail.sdu.edu.cn

Haowen Tan
NetEase (Hangzhou) Network Co., Ltd.

China
tanhaowen@corp.netease.com

Yanning Xu
Shandong University

China
xyn@sdu.edu.cn

Lu Wang*

Shandong University
China

luwang hcivr@sdu.edu.cn

Abstract

The glinty details from complex microstructures sig-
nificantly enhance rendering realism. However, the pre-
vious methods use high-resolution normal maps to de-
fine each micro-geometry, which requires huge memory
overhead. This paper observes that many self-similarity
materials have independent structural characteristics,
which we define as tiny example microstructures. We
propose a procedural model to represent microstruc-
tures implicitly by performing spatial transformations
and spatial distribution on tiny examples. Furthermore,
we precompute normal distribution functions (NDFs) by
4D Gaussians for tiny examples and store them in multi-
scale NDF maps. Combined with a tiny example-based
NDF evaluation method, complex glinty surfaces can be
rendered simply by texture sampling. The experiment
shows that our tiny example-based microstructure ren-
dering method is GPU-friendly, successfully reproduc-
ing high-frequency reflection features of different mi-
crostructures in real-time with low memory and com-
putational overhead.

Keywords: Real-time, Reflectance modeling, Glinty
materials, Rendering

1. Introduction

The microstructure of the material surface exhibits
sparkling effects in the real world when illuminated by
sharp light sources. Traditionally, the microfacet model re-
lies on aggregate statistical distribution to describe these
complex and spatial varying micro-geometries, resulting
in smooth highlight and loss of high-frequency reflection

*Corresponding author.

effect. The microstructure’s reflection characteristics are
taken into account by highly realistic rendering methods to
enhance the visual realism of computer-generated imagery
(CGI). However, real-time rendering still lacks a general
and efficient microstructure rendering method.

The representation of microstructures is a critical fac-
tor in microstructure rendering. First, a complete and thor-
ough representation of different micro-geometries is needed
to keep detailed features. Second, it is supposed to be
lightweight and introduce no excessive storage overhead.
Yan et al. [21] define all geometric details of microstruc-
tures by the high-resolution normal mapping. However, at
the same time, it introduces high memory overhead and an
extended performance burden, making it difficult to be ap-
plied directly in real-time scenarios that require immediate
feedback.

Several recent approaches, such as Zhu et al. [22] and
Wang et al. [16] use example-based approaches to implic-
itly represent microstructures, which can dramatically de-
crease the memory cost. However, these methods are still
time-consuming since they need complex hierarchies to
evaluate the normal distribution. Tan et al. [12] optimized
it for real-time implementation on GPUs by prefiltering mi-
crostructures based on MIP-map. All those methods need
to use a proper example, which is still difficult to present
varied structures of materials.

We have a key observation that microstructures are gen-
erally self-similar and can be abstracted into a tiny exam-
ple (represented by a tiny normal map). Therefore, this pa-
per assumes that a material’s macroscopic surface is com-
posed of many tiny example microstructures, and the global
micro-geometry is determined by many tiny examples to-
gether after spatial transformation and spatial distribution
operations. Based on this assumption, this paper proposes a
tiny example-based real-time microstructure representation

1

and rendering method with the following contributions:

• a tiny example-based discretization representation that
combines multi-scale NDF maps for materials with
self-similarity or independent patch features, which
has high expressiveness.

• a tiny example-based spatial transformation and spa-
tial distribution method to enhance the structural diver-
sity of macroscopic surfaces while maintaining only
a small amount of data, which significantly reduces
memory overhead.

• a tiny example-based NDF evaluation formulation en-
ables real-time rendering of complex microstructures
with high performance and low memory cost.

2. Related work

As an essential part of photorealistic rendering, glinty
microstructure representation and evaluation have received
significant attention from researchers. In this section, we re-
view previous work on glinty microstructure representation
for offline rendering and real-time rendering.

2.1. Offline microstructure rendering

There are two prominent families of approaches for mi-
crostructure representation. One is the explicit represen-
tation based on high-resolution normal mapping, and the
other is the implicit representation of microstructure by an-
alytical formulas or stochastic distribution models.

Explicit representation. The explicit representation of
microstructure mainly relies on normal mapping or height-
field, which is a methodology inherited from Yan et
al.’s [19] mathematical framework. Yan et al. [21] em-
ployed the 4D Gaussian mixture to model the typical distri-
bution of the microstructure, achieving better performance
than prior research. They also explored the glinty appear-
ance under wave optics [20]. However, these approaches
have high storage requirements, and the 4D position-normal
query is costly. Gamboa et al. [7] represented microstruc-
tures via discrete 2D texture histograms and applied a filter-
ing technique combining environmental lighting and normal
mapping, which demands significant memory. Atanasov et
al. [2] presented the “inverse bin map”–an advanced inte-
gral histogram, to speed up the filtering of the bidirectional
reflectance distribution function (BRDF) with Beckmann
distribution for microstructures in persistent storage. Based
on the normal map, explicit representation acquires spatial
and directional features directly, providing more flexibility.

Implicit representation. Jakob et al. [9] proposed a
stochastic approach to simulate temporally stable sparkling

fP(ωi,ωo) Surface BRDF
P Footprint
ωh Half vector of reflection
ωi,ωo Light and view directions
n Surface normal
u 2D global texture coordinate
u′ 2D local texture coordinate
s Query direction
DP(s) Patch normal distribution function
N (u, s) Position-normal distribution
GP(u) Gaussian approximating to a footprint
Gi(u, s) 4D Gaussian lobes
n(u) Normal map function
J Jacobian of n(u)
Σ−1

i Inverse of 4× 4 covariance matrix
σh Std. deviation of seed Gaussians
σr Intrinsic roughness
l Level of multi-scale NDF maps
T Example tile
NT Number of texels in an example tile T
t Local texture coordinates in a NDF map
t′ Transformed t
M Spatial transformation matrix
Φ(u) Tile position in NDF map space
Bl(u

′) NDF map function at level l

Table 1. Notations.

effects. In their method, the proportion of spatially ran-
domly distributed metallic flakes is obtained by an effi-
cient evaluation method. Atanasov et al. [1] optimized the
sampling process for better overall performance. Wang et
al. [17] made the rendering process more efficient by de-
riving the method in a separable and filterable form. Some
methods for the microstructure of specific scratches [11, 18]
have also been proposed. Deng et al. [6] developed a
prefiltering method relying on precomputation, aggregat-
ing data into a 3D NDF tensor to accelerate spatial-angular
range queries during rendering. Nevertheless, it incurs the
high cost of NDF generation and compression overhead.
To address memory issues, Zhu et al. [22] and Wang et
al. [16] extended the work of Yan et al. [21]. They gen-
erated stationary microstructures through a by-example ap-
proach. Zhu et al. [22] generated microstructure through
texture syntheses and reduced memory overhead by cluster-
ing structural elements. Meanwhile, Wang et al. [16] em-
ployed texture blending to extend the example normal map
infinitely and maintain constant memory overhead. Dif-
ferent from the traditional methods above, Kuznetsov et
al. [10] first introduced a deep learning method to gener-
ate glinty patches that enable the synthesis of glinty results
without significant spatial repetition.

2.2. Real-time microstructure rendering

For real-time rendering, most methods as follows use im-
plicit representations to generate ultra-high-resolution nor-
mal maps, and our method is the same. Zirr et al. [23] pro-
posed a method to accelerate the estimation of probability
distribution using the MIP hierarchy and achieve real-time
performance based on Jakob et al. [9]. Deliot et al. [5] re-
duced the number of texels falling under a pixel footprint by
combining a counting method with an anisotropic parame-
terization of the texture space to accelerate the runtime per-
formance. In contrast, Chermain et al.’s method [3] is more
physically based and can converge to the Cook-Torrance
model [4] when the flake density is high enough. Wang et
al. [15] simulated randomly discrete microfacet under en-
vironment lighting and point light in real-time by prefilter-
ing. Furthermore, Velinov et al. [13] proposed a scratch ap-
pearance method under wave optics based on their previous
work [18]. Tan et al. [12] introduced a real-time prefiltering
approach for microstructures that employed MIP-maps to
select microstructures at the suitable level of details (LODs)
for storage-stable and efficient rendering.

Implicit representation methods are limited in their abil-
ity to convey the fine details of micro-geometry accurately.
Our approach preserves rich details based on tiny examples
and improves the diversity of microstructures through the
spatial transformations of tiny examples.

3. Background

In this section, we first introduce the surface BRDF and
then provide the evaluation of the normal distribution func-
tion.

3.1. Surface BRDF

During rendering, the surface BRDF fP for the footprint
P is defined as:

fP(ωi,ωo) =
DP(ωh)G(ωi,ωo,ωh)F (ωi,ωh)

4(ωi · n)(ωo · n)
, (1)

where ωi and ωo denote the light and view directions, the
term ωh refers to the half vector of reflection, n represents
the surface normal, F is the Fresnel term, G is the masking-
shadowing function [14]. DP(ωh) is the patch normal dis-
tribution function (P-NDF) over a spatial footprint P ac-
cording to the querying direction, also known as the half
vector ωh. The evaluation of DP(ωh) is a major difficulty
in microstructure rendering and is the core of the discussion
in this paper.

3.2. Evaluation of the normal distribution function

Our P-NDF evaluation builds upon the method of Yan
et al. [21], where the evaluation of DP can be written as

follows:
DP(s) =

∫
GP(u)N (u, s)du, (2)

where s is the query direction (also represents the 2D nor-
mal with implicit z-coordinate), GP is Gaussian approxi-
mating to a spatial footprint, u represents the 2D texture
coordinate. N is the position-normal distribution which can
be approximated by Gaussian lobes. Yan et al. [21] used
a large number (k) of 4D Gaussian lobes Gi obtained by
traversing each texel in the normal map to approximate N ,
i.e.,

N (u, s) ≈
k∑

i=1

Gi(u, s). (3)

After defining δui = (u − ui)
T , δsi = (s − si)

T , each
Gaussian lobe Gi is represented as:

Gi(u, s) = cie
(− 1

2 (δui,δsi)
TΣ−1

i (δui,δsi)), (4)

where ci is a constant for normalization. With the Jacobian
J of the 2D normal n(u) (sampled from a normal map,
n(u) = (nx, ny)), the inverse of 4 × 4 covariance matrix
Σ−1

i is expressed as:

Σ−1
i =

1

σ2
h

(
I 0
0 0

)
+

1

σ2
r

(
JTJ −JT

−J I

)
, (5)

where, σh is the deviation of seed Gaussians, σr is the in-
trinsic roughness.

Therefore, for the given P and s, the P-NDF is defined
as:

DP(s) ≈
k∑

i=1

∫
GP(u)Gi(u, s)du. (6)

4. Overview

The representation of microstructure (Section 5) and
the corresponding shading process, particularly the exam-
ple transformation, distribution, and NDF evaluation (Sec-
tion 6), are crucial for depicting high-frequency details.

For the issue of microstructure representation, we pro-
pose to use a tiny normal map to represent the overall char-
acteristics of the microstructure and define it as an example
in Section 5.1. We then compute multi-scale NDF maps
for the tiny example in precomputation (Section 5.2) so that
real-time applications can process complex specular sur-
faces through simple texture sampling at different LODs.

The core issues related to microstructure rendering are
example transformation, distribution, and the NDF eval-
uation. Based on the geometry characteristics of materi-
als, we classify the tiny examples into stochastically dis-
tributed and tiled examples. In order to enrich the diver-
sity of materials, we determine the corresponding spatial
transformation (Section 6.1) for stochastically distributed

Precomputation

LOD 0

LOD 1

LOD 2

LOD 0

LOD 2

LOD 3

Tiny example

Precompute

...

Real-time shading

Or

Case 1: example
transformation

Case 2: tiling
+ example distribution

+

Tiny example Tiny example

Noise map

Implicitly generated high
resolution normal map

Implicitly generated high
resolution normal map

... ...

Precomputed multi-scale NDF maps
Implicitly generated

examples in a footprint

Query:

Footprint

Surface

...

Multi-scale NDF maps

Figure 1. The pipeline of our method includes two major parts: precomputation and real-time shading. During precomputation, we
compute NDF at various LOD levels for the input tiny example and save them into multi-scale NDF maps. In the real-time shading stage,
we use a procedural model to implicitly generate large-scale microstructures by performing spatial transformations and distribution on the
tiny example with a noise map. While shading, we identify examples partly covered by the footprint and divide them into tiles of varying
LODs. For the examples entirely covered by the footprint, we select the top LOD. Finally, we employ a tiny example-based NDF evaluation
method to enable a fast and accurate approximation of the NDF by summing up the tiles of precomputed NDF maps. The entire shading
process is carried out in real-time and is compatible with GPU to ensure the method’s efficiency.

examples and distribution (Section 6.2), thereby generating
a large-scale microstructure that describes the overall mate-
rial. We evaluate NDF based on stochastically distributed
and tiled tiny examples and reproduce the glinty appear-
ance in Section 6.3. Furthermore, we also discuss the multi-
microstructure-layer case in Section 6.4.

We illustrate the overall pipeline of our method in Fig. 1,
which mainly consists of the precomputation and real-time
shading stage.

5. Tiny example-based microstructure repre-
sentation and precomputation

A normal map that stores the tangent space normals of
objects is often used to describe the geometric structure
characteristics of materials. The explicit method utilizes
an arbitrary high-resolution normal map to specify the mi-
crostructure with heavy storage overhead. In our method,
the global microstructure is implicitly generated by tiny ex-
amples that are defined by the example normal map.

5.1. Discrete representation

Most of the materials exhibit similar structural charac-
teristics and corresponding light transport. Therefore, we
assume that a structural element exhibiting self-similarity
and its variants form a macroscopic surface under a spatial

distribution function. We define a small scale of microstruc-
tures with the same characteristics in the spatial domain as
a tiny example.

We use an example normal map (usually smaller than
32×32), called the tiny example, to represent the example
microstructure of a specific material. Given a tiny example,
we precompute approximate NDFs and store them in multi-
scale textures.

5.2. Multi-scale NDF maps precomputation

For a tiny example with n×n resolution, we compute the
highest level of LOD for its corresponding multi-scale NDF
maps by log2n − 1, and the NDF map resolution m × m
at each level l by n/(2l+1) × n/(2l+1). For instance, the
input tiny example in Fig. 1 has a resolution of 16 × 16.
Therefore it can build NDF maps with 4 layers of LOD, and
their resolutions are 8× 8, 4× 4, 2× 2, and 1× 1.

While precomputing the NDF for each level based on the
tiny example, we divide the tiny example into m ×m tiles
equally. Each tile in the example contains a set of explicitly
specified normals which are used to compute its NDF value.
In a similar way to Yan et al. [21], we assume the NDF of
a tile is an equally weighted average of these micro-scale

Example

Transformed examples

y y

y y

x x

x x

M

Scale Shear

Offset

y

x

Symmetry

Rotate

y

x

Figure 2. Spatial transformations for tiny examples through differ-
ent transformation matrices.

normals, which is defined as follows:

DP(s) =
1

NT

∑
u∈T

Gi(u, s), (7)

where NT is the number of texels in an example tile T .
Each discrete NDF is computed per tile using Eq. 7 and

encoded into NDF maps at each level. Besides, we also save
the Gaussian lobes used to describe the microstructure more
precisely if needed. Attributes include the position, normal,
Jacobian matrix, etc..

6. Real-time shading

In this section, based on the representation of a single
discrete tiny example presented above, we provide the cor-
responding spatial transformations, distributions, and NDF
evaluation methods. Moreover, we apply these methods to
explore the visual effects of a multi-layer microstructure
with a simplified multi-layer microstructure material model.

6.1. Spatial transformation

Distributing the same tiny example-based microstructure
on the surface directly by tiling may result in noticeable vi-
sual errors, such as repetitive features. We obtain more ex-
amples by spatial transformations during real-time shading.

For texels in the multi-scale NDF maps,
we transform their local texture coordinates t
(t = (tx, ty,

√
1− tx

2 − ty
2)) in local texture space

by a 3 × 3 matrix M to get transformed local texture
coordinates t′, which is defined as:

t′ = Mt. (8)

The spatial transformation matrix M is defined as fol-
lows:

M =

sx hx tx
hy sy ty
0 0 1

 , (9)

Example 1

Example 2 Overlapping region

Remove overlap

Result

CE1

CE1

CSr1

1 2

3 4

CSr2

CSr3 CSr4

CE2
CE2

Figure 3. Examples overlapping case. We divide the overlapping
region into four sub-regions equally first. CE1 and CE2 are the
center positions of example 1 and 2. CSr1-4 are the center positions
of sub-regions. For the sub-region 1 in the upper left part, the
distance |CSr1 − CE1| is smaller than |CSr1 − CE2|. Therefore
we consider example 1 to override sub-region 1. We use the same
strategy to deal with the other sub-regions.

where, sx and sy are scaling coefficients that control the
transformation at the microstructure scale, allowing us to
obtain isotropic or independent scale transformations in dif-
ferent directions. hx and hy represent the stretching coeffi-
cients along the x-axis or y-axis, which allows us to con-
trol the macroscopic diffusion direction of the highlights
by sheer transformations. Besides, rotation, symmetry, and
other spatial transformations are also achieved through M ,
as shown in Fig. 2.

6.2. Spatial distribution

Based on microstructure characteristics, we classify
tiny examples into stochastically distributed type (e.g.,
scratches) and tiled type (e.g., brushed metal), and distribute
them in different ways.

Stochastically distributed type. For stochastically dis-
tributed microstructures, their overall structural character-
istics are not prominent. Furthermore, their appearance
characteristics can be enriched through examples of spatial
transformations during distribution. Therefore, we encode
examples’ random center positions and coefficients of trans-
form matrices M (Section 6.1) into a noise map first. Dur-
ing the shading stage, for each example, the noise map im-
plicitly depicts the example area in the global texture space
by its global center position and coefficients of M , thereby
enriching the overall appearance diversity of macroscopic
materials.

Tiled type. For tiled microstructures with self-similarity
and inapparent seams after tiling, such as brushed metal,
the random transformation of a single tiny example leads to
the loss of the original structural characteristics at a macro-
scopic scale. Thus we use specific transformations (such as
isometric scaling, etc.) to maintain macro-consistency and
control the macroscopic high-frequency appearance fea-
tures. Then we tile the examples directly in the global tex-
ture space. The tiled examples are closely arranged, and

there is no overlap between them.

6.3. NDF evaluation of tiny example-based microstruc-
ture

For a shading point in pixel space, it is essential to de-
termine its footprint P in texture space. We use the same
Gaussian representation method as Heckbert [8] to approx-
imate the footprint with a parallelogram in texture space. In
this way, we obtain the texture positions u covered by P in
the global texture space.

Because we have already encoded examples’ center po-
sitions in the global texture space and corresponding trans-
formation matrix M into a noise map. Therefore, for a tex-
ture position u, we can traverse all examples’ information
in the noise map and determine if u is inside the examples.
Because the number of examples covered by P is small and
the parallelism of the GPU is fully utilized, the processing
is very fast.

For the tiled example type, we get only one example at u.
But for stochastically distributed example type, we get sev-
eral examples due to the multiple examples that may over-
lap with each other. It is necessary to define the occlusion
relationship of the overlapping region first. We divide the
overlapping region into four sub-regions of equal size. For
a single sub-region, we compare the Euclidean distance be-
tween the center of the sub-region and the centers of each
example, and always use the nearest example to define the
occlusion relationship. The details are shown in Fig. 3.

Using this strategy, we determine a unique example that
covers the position u. Because we have distributed and
transformed the examples onto the global texture space, we
can obtain the local query position u′ in NDF maps by back-
projecting u based on the center position and the transfor-
mation matrix M of the example. We define this computa-
tion processing as Φ(u).

The P-NDF is accumulated by the NDF contributions of
examples covered by the footprint P , which can be queried
from the precomputed multi-scale NDF maps. Bl(u

′) rep-
resents the NDF contribution of each example at LOD level
l (under the query direction s). When a tiny example is en-
tirely covered by a footprint, we sample and accumulate its
normal distribution term from the highest LOD NDF map.
When it is partially covered by P , the LOD of the NDF
map reduces gradually from the highest level to determine
whether the current tiles in the NDF map are totally covered
by P until the NDF map is subdivided to the lowest LOD
level. This spatial subdivision is shown in Fig. 1.

At the same time, when the footprint is smaller than the
lowest LOD tile, we directly compute NDF with the pre-
computed Gaussian lobes instead of sampling from the pre-
computed NDF maps, as shown in Eq. 6.

6.4. Multi-microstructure-layer rendering

To gain efficiency in real-time rendering, we approx-
imate the resulting light transport by two BRDF lobes
at the shading point. This section discusses the multi-
microstructure-layer case (as shown in Fig. 4) without ex-
plicitly evaluating the complex light transport of interlayer
scattering. The first BRDF lobe fc accounts for the top layer
(or a clearcoat layer), and the second lobe fb accounts for
the bottom layer (or a base layer).

Base Layer

Clearcoat Layer

Light

Figure 4. The visualization of the multi-microstructure-layer case.
The microstructure of the material surface includes a base layer
and a clearcoat layer above it. We simulate complex reflection
effects by combining the lobes of two layers.

The light transport passing through the clearcoat and
reaching the base layer is approximately proportional to 1−
Fc, where Fc represents the Fresnel term of the clearcoat.
The resulting BRDF fs of the multi-layer model is ex-

(a) 11.2 ms (b) 14.5 ms (c) 11.8 ms (d) 14.5 ms

Base Base Clearcoat Base Base Clearcoat

Figure 5. Rendering results of the multi-microstructure-layer
case. In the Bent quad scene, two groups of identical microstruc-
tures with different layer orders present different visual effects (b,
d), but the rendering time is consistent. At the same time, the
multi-layer microstructures (b, d) exhibit more detailed features
than the single-layer microstructure (a, c).

(a)
Ours

(b)

(c)

(d)

(e)

38.58 MB
13.7 ms

Reference

4134.4 MB
91.8 ms

Examples

Figure 6. The comparison between our method and the reference method [21] on the Desktop scene with various types of microstructures.
The high-frequency effects are almost identical. Our method only consumes 1% of memory overhead and significantly improves the
rendering speed compared to the reference.

pressed as Eq. 10:

fs = fb (1− Fc) + fc. (10)

At the same time, different normals are used to evalu-
ate the Fresnel term and masking-shadowing term for the
clearcoat and base layer, which is typically done in produc-
tion and works with our method. NDFs at different layers
are also computed independently.

Fig. 5 compares the results of two different microstruc-
tures on the Bent quad scene under different layer orders,
which lead to significant differences in the visual char-
acteristics of microstructures. The high-frequency effects
in Fig. 5 (b, d) are mixed with scratches and anisotropic
noise, but they look different. The high-frequency effects in
Fig. 5 (b) are more visually shown as bright flakes, and the
less energy distribution on the clearcoat leads to discontin-
uous scratches. In contrast, scratches in Fig. 5 (d) are more
obvious and continuous. In addition, computing the NDF of
the microstructure for each layer in a single shading point
also incurs a certain degree of additional performance bur-
den, but it is still affordable for real-time rendering.

7. Results

We have implemented our method in OpenGL 4.6 and
compared it with other typical methods (include Yan et
al. [21], Wang et al. [16], Zhu et al. [22], Tan et al. [12])
using our unified platform in terms of visual effects, mem-
ory consumption, and rendering speed. Besides, We treat

the result of Yan et al. [21] as the correct value and use their
method as the reference. All statistics in this section are per-
formed on a PC with a 3.6-GHz Intel (R) i9-9900K CPU, 32
GB of main memory, and an NVIDIA TITAN RTX GPU.
Measurements are made for FHD (1920 × 1080) image res-
olution using forward rendering without postprocessing.

We use four sharp point lights and an environment light
to illuminate the microstructure and the entire scene. The
environment light is encoded through distance light probes,
which is an image-based lighting method that simulates the
diffuse reflection of ambient light by precomputing the irra-
diance into a cube map and approximating the specular re-
flection part by prefiltering the environment light map and
combining it with a BRDF lookup table.

In our experiments, we use tiled tiny examples for
structured materials, brushed metal, leather, and other mi-
crostructures with unique geometric features. Stochasti-
cally distributed tiny examples are applied to microstruc-
tures of scratches and noise.

7.1. Comparison with previous work

Desktop scene. In this scene of Fig. 6, we compare the
result of our method with the reference [21]. The scene
contains five common types of microstructures, including
(a) anisotropic noise, (b) brushed metal, (c) isotropic noise,
(d) leather, and (e) structured materials. The normal map
resolution of each microstructure in the reference method is
2K × 2K. The two methods are almost equivalent regard-
ing high-frequency detail features, but our method signif-

Zhu et al.Wang et al.

1464.5 MB592.0 MB
142.8 ms142.7 ms

Tan et al.

149.2 MB
16.3 ms

Reference

17364.4 MB
142.8 ms

Examples Ours

(a)

(b)

(c)

(d)

113.2 MB
14.5 ms

Figure 7. The comparison of our method with other microstructure rendering methods [16, 22, 12, 21] on the Coffee machine scene
containing four types of microstructure, including (a) brushed metal, (b) scratch, (c) structured materials, and (d) isotropic noise. Compared
to these methods, our method is faster and significantly reduces memory overhead while rendering visually identical results.

icantly reduces memory and computational overhead. For
this complex scene composed of multiple microstructures,
our method only takes 13.7 ms, which reduces memory
overhead by tens of times compared to the reference method
(91.8 ms). This makes our method more suitable for the
real-time rendering pipeline.

Coffee machine scene. We compare our method with
other microstructure rendering methods in a more complex
scene, as shown in Fig. 7. For zoomed-in local details, our
method is consistent with other microstructure representa-
tion methods and can well represent the characteristics of
different types of microstructures. Whether the tiny exam-
ples are tiled in Fig. 7 (a, c, d) or randomly distributed in
Fig. 7 (b), our method maintains the continuous character-
istics of the structure without visually significant duplica-
tion while providing a good approximation of the reference
method [21]. Our method directly focuses on structural pat-
terns, avoiding the generation of redundant microstructure
unrelated to micro-geometry features, which is common in
example-based approaches [16, 22, 12]. Our method signif-
icantly reduces the memory cost and enhances performance.

Other scenes. In Fig. 9, there are three simple scenes:
Sphere scene (noise), Shoes scene (leather), and Bent quad
scene (scratch), corresponding to different microstructure

Ours:
85.25 MB, 11.8 ms

Reference:
3307.5 MB, 90.9 ms

Difference visualization

Figure 8. Comparison between our method and reference [21] on
the Bent quad scene under the same scratch microstructure.

types. For the leather type in Shoes scene, we generate
the results using our method of tiled examples, which is
comparable to the visual effect of other methods without
any structural discontinuity. For noise and scratch materi-
als in the Sphere scene and the Bent quad scene, we adopt
stochastically distributed examples and increase the diver-
sity of microstructure through spatial transformations. The
microstructure presents continuous high-frequency effects,

ReferenceWang et al.

SP
H

E
R

E

Zhu et al. Tan et al.Ours

91.3 ms, 3307.5 MB91.4 ms, 148.0 MB 91.3 ms, 408.0 MB

SH
O

E
S

11.7 ms, 27.4 MB12.0 ms, 5.32 MB

76.9 ms, 3307.5 MB76.7 ms, 148.0 MB 76.8 ms, 408.0 MB

B
E

N
T

 Q
U

A
D

12.2 ms, 27.4 MB11.6 ms, 5.32 MB

90.9 ms, 3307.5 MB90.9 ms, 148.0 MB 90.8 ms, 624.0 MB 12.7 ms, 95.8 MB11.8 ms, 85.25 MB

Figure 9. The comparison of rendering results using our method and other microstructure rendering methods [16, 22, 12, 21] on three
different scenes. We compared the glint effect generated by anisotropic noise microstructures using different methods in Sphere scene, the
continuous highlight of leather type microstructures in Shoes scene, and the scratch effect generated in Bent quad scene.

specifically showing continuous scratches in the Bent quad
scene and disorderly distribution of noise in the Sphere
scene. Compared with the method of Wang et al. [16] based
on texture blending, our method does not cause the blur of
highlight details.

Table 2. Comparison of precomputation time between our method
and the reference [21] on different types of microstructures.

Microstructure Pre. time (s)
Reference

Pre. time (s)
Ours

Leather 1565.7 6.2
Structure 3531.1 2.3

Brushed metal 1569.7 49.7
Isotropic noise 1568.9 6.2

Anisotropic noise 1559.8 6.1
Scratch 1567.3 72.4

7.2. Quality analysis

Algorithm validation. In Fig. 8, we compare the method
of Yan et al. [21] to verify the correctness of our method

and show the visualization of the results errors. To ensure
that the geometric information of the two methods on the
Bent quad scene is consistent, we explicitly export the mi-
crostructure generated by our procedural method and apply
it to the reference method. Our proposed method is a fast
approximate estimate of the correct value with low memory
cost and is visually comparable to the reference [21]. The
visualized error between our method and the reference [21]
is mainly displayed in the overlapping regions of the exam-
ples.

Microstructure representation range. Our method can
simulate a lot of glossy materials under different struc-
tural features. In the Deer statue scene of Fig. 10 (b, c,
d), the upper right corner shows the input tiny examples
of our method, and Fig. 10 (a) shows the result under the
GGX statistical distribution [14]. For tiled examples, we
obtain structured highlights in Fig.10 (b). For stochasti-
cally distributed examples, we get disordered scratch ef-
fects in Fig. 10 (c) and shiny flakes under isotropic noise
in Fig. 10 (d).

(d) (d) (d)

(a) 9.3 ms (b) 13.3 ms (c) 13.9 ms (d) 12.0 ms

Figure 10. Comparison between our results (b-d) and the result (a) under the GGX statistical distribution [14] on the Deer statue scene.
Our method depicts the microstructure with the example normal map ((b-d) top right) and gets (b) structural highlight, (c) scratched effects,
and (d) glittery effects.

Table 3. Performance and memory cost for the scenes of our method and reference [21]. Input res. denotes the resolution of the input
normal maps (i.e. tiny examples in our method) used to represent the microstructure.

Scene Material
Input res. Rendering time (ms) Memory (MB)

Ours Reference Ours Reference Speedup Ours Reference

Deer statue

Scratch 322 4K2 13.9 71.4 5.1× 85.25 3307.5
Anisotropic 162 4K2 12.3 62.5 5.1× 5.32 3307.5

Isotropic 162 4K2 12.0 71.2 5.9× 5.32 3307.5
Structure 82 6K2 13.3 80.7 6.1× 1.31 7441.9

Brushed metal 162 4K2 13.2 76.9 5.8× 21.31 3307.5

Coffee machine

Scratch 322 4K2

14.5 142.8 9.8×

85.25 3307.5
Isotropic 162 4K2 5.32 3307.5
Structure 82 6K2 1.31 7441.9

Brushed metal 162 4K2 21.31 3307.5

Bent quad
Scratch 322 4K2 11.8 90.9 7.7× 85.25 3307.5

Anisotropic 82 4K2 11.2 76.9 6.9× 5.32 3307.5
Scratch & anisotropic 322 & 162 4K2 14.5 166.7 11.5× 90.57 6615.0

Sphere Anisotropic 2562 4K2 12.0 91.3 7.6× 5.32 3307.5

Shoes Leather 162 4K2 11.6 76.9 6.6× 5.32 3307.5

Desktop

Isotropic 162 2K2

13.7 91.8 6.7× 38.58 4134.4
Anisotropic 162 2K2

Leather 162 2K2

Structure 82 2K2

Brushed metal 162 2K2

7.3. Performance and storage analysis

Precomputation time. Yan et al. [21] traverse a high-
resolution normal map with the fixed texture sampling rate
to obtain the Gaussian lobes. The preprocessing time de-
pends on the resolution of the input normal map. Unlike
the time-consuming high-resolution normal map, the time
for sampling the tiny example is negligible. Moreover, the
precomputation time of our method mainly depends on the
resolution of NDF images. Compared with previous work,
we only need to precompute the multi-scale NDF approx-

imation of a single tiny example. Thus the preprocessing
speed has been significantly improved, as shown in Table 2.

Rendering time. Table 3 shows the rendering time com-
parison between our method and the reference [21] on dif-
ferent types of microstructures in test scenes. Our method
reduces memory overhead and efficiently completes the
originally time-consuming NDF evaluation, significantly
improving the frame rate and meeting real-time rendering
requirements. For the multi-microstructure-layer case, sep-

(d)(d)

(b)

(d)

(c)(a)

Figure 11. Results of the different example spatial transforma-
tions. The brushed metal microstructure exhibits different vi-
sual effects under different spatial transformation matrices in Deer
statue scene.

(d)

Figure 12. Results of the different example spatial distribution.
The shiny glints of anisotropic noise microstructure are visually
similar under different spatial distribution noise maps (shown in
the upper right corner) in Deer statue scene.

8 × 8, 1.33 MB, 13.8 ms 32 × 32, 21.31 MB, 13.2 ms
(a) (b)

Figure 13. Comparison of different example resolutions on Deer
statue scene. Tiling different resolutions of brushed microstruc-
ture examples yields different effects. The low-resolution setting
in (a) causes visual errors.

arately evaluating NDF for each layer results in almost dou-
ble the performance cost.

Memory cost. In Table 3, we report the memory cost of
our method and the reference during real-time shading. The
memory cost of our method mainly depends on the resolu-
tion and LOD level of multi-scale NDF maps. The addi-
tional saved Gaussian lobes of the example require negligi-
ble memory consumption. Our method only uses a fraction
(up to 0.05%) of memory cost compared to the reference.
To describe leather, noise, and structured materials, the res-
olutions of tiny examples are usually smaller than 16× 16,
which are used along with NDF maps at resolutions of 8×8,
4 × 4, 2 × 2, and 1 × 1. Larger example sizes are used for
microstructures with strong discrete characteristics such as

(a) (b)

Figure 14. Limitation of our method. The rendering result for
wood grain in (a) exhibits a loss of macro features due to the chal-
lenge of extracting structural examples from the strongly spatial
correlated patterns in the continuous microstructure shown in (b).

brushed metal and scratches. For scratches, a 32×32 exam-
ple is enough, corresponding NDF maps with resolutions of
16×16, 8×8, 4×4, 2×2, and 1×1, which result in higher
memory usage.

7.4. Parameter analysis

We analyze the impact of examples’ spatial transforma-
tion on high-frequency appearance for tiled brushed metal
in Fig. 11. Compared to Fig. 11 (a), we obtain the ef-
fect of different highlight diffusion directions in Fig. 11 (b)
through a unified rotation transformation matrix for each
example. Fig. 11 (c) shows the coarser highlights under the
unified scaling matrix.

We also discuss the macroscopic visual effects of the dif-
ferent spatial distributions of examples by different noise
maps for randomly placed anisotropic noise in Fig. 12. Al-
though the noise maps differ, the effects and time costs of
different example distributions are highly similar.

We analyze the impact of the example resolution on ren-
dering results and performance in Fig. 13. For brushed
metal, examples with low resolution (Fig. 13 (a)) can not
represent the overall geometric information of the mate-
rial, and the results show obvious visual seam patterns after
tiling.

7.5. Discussion and limitations

Our proposed method has several limitations due to our
assumptions. We identify scenarios in which our method
can be improved.

Absence of macroscopic features. We assume that the
micro-geometry is composed of numerous microstructures
described by the input tiny example. Therefore, our method
does not support the simulation of global features in macro-
geometry, such as the growth patterns of wood, as shown in
Fig. 14.

Absence of generality of the representation. We assume
that the examples have tiled and stochastically distributed
types based on prior knowledge. Our method can not han-
dle all microstructures uniformly, resulting in a lack of gen-
erality.

8. Conclusion and future work

We have presented a practical real-time method that effi-
ciently renders a glinty appearance in a GPU-friendly man-
ner with lower memory and computational overhead. We
define the structural microstructures of micro-geometry as a
tiny example, encoding its multi-scale NDF maps in a pre-
computed manner. Additionally, the overall geometry of
the microstructure is obtained from example spatial distri-
butions, and the structural diversity is enhanced through ex-
ample spatial transformations. Eventually, high-frequency
reflection features such as glints are reproduced in real-time
with low memory cost using our method.

In the future, optimizing our method by integrating a
more efficient example representation without the normal
map, would be interesting. Additionally, the extension of
our method for wave optics could lead to valuable advance-
ments.

Acknowledgement

We thank the reviewers for their valuable suggestions.
This work has been supported by the National Natural
Science Foundation of China under grant No.62272275.
Youxin Xing and Haowen Tan are dual first authors.

References

[1] A. Atanasov and V. Koylazov. A practical stochastic algo-
rithm for rendering mirror-like flakes. In Special Interest
Group on Computer Graphics and Interactive Techniques
Conference, SIGGRAPH ’16, Anaheim, CA, USA, July 24-
28, 2016, Talks, pages 67:1–67:2, 2016. 2

[2] A. Atanasov, A. Wilkie, V. Koylazov, and J. Křivánek. A
multiscale microfacet model based on inverse bin mapping.
Computer Graphics Forum, 40, 2021. 2

[3] X. Chermain, B. Sauvage, J.-M. Dischler, and C. Dachs-
bacher. Procedural physically based brdf for real-time ren-
dering of glints. Computer Graphics Forum, 39(7):243–253,
2020. 3

[4] R. L. Cook and K. E. Torrance. A reflectance model for
computer graphics. ACM Transactions on Graphics (TOG),
1(1):7–24, 1982. 3

[5] Deliot, Thomas, Belcour, and Laurent. Real-time render-
ing of glinty appearances using distributed binomial laws on
anisotropic grids, 2023. 3

[6] H. Deng, Y. Liu, B. Wang, J. Yang, L. Ma, N. Holzschuch,
and L.-Q. Yan. Constant-cost spatio-angular prefiltering of
glinty appearance using tensor decomposition. ACM Trans-
actions on Graphics (TOG), 41(2):1–17, 2022. 2

[7] L. E. Gamboa, J.-P. Guertin, and D. Nowrouzezahrai. Scal-
able appearance filtering for complex lighting effects. ACM
Transactions on Graphics (TOG), 37(6), 2018. 2

[8] P. S. Heckbert. Fundamentals of texture mapping and image
warping. Technical Report UCB/CSD-89-516, EECS De-
partment, University of California, Berkeley, Jun 1989. 6

[9] W. Jakob, M. Hašan, L.-Q. Yan, J. Lawrence, R. Ramamoor-
thi, and S. Marschner. Discrete stochastic microfacet models.
ACM Transactions on Graphics (TOG), 33(4):1–10, 2014. 2,
3

[10] A. Kuznetsov, M. Hašan, Z. Xu, L.-Q. Yan, B. Walter,
N. K. Kalantari, S. Marschner, and R. Ramamoorthi. Learn-
ing generative models for rendering specular microgeometry.
ACM Trans. Graph., 38(6), nov 2019. 2

[11] B. Raymond, G. Guennebaud, and P. Barla. Multi-scale
rendering of scratched materials using a structured sv-brdf
model. ACM Transactions on Graphics, 35, 07 2016. 2

[12] H. Tan, J. Zhu, Y. Xu, X. Meng, L. Wang, and L.-Q. Yan.
Real-time microstructure rendering with mip-mapped nor-
mal map samples. Computer Graphics Forum, 41(1):495–
506, 2022. 1, 3, 7, 8, 9

[13] Z. Velinov, S. Werner, and M. B. Hullin. Real-time render-
ing of wave-optical effects on scratched surfaces. Computer
Graphics Forum, 37(2):123–134, 2018. 3

[14] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. Mi-
crofacet models for refraction through rough surfaces. In
Proceedings of the 18th Eurographics Conference on Ren-
dering Techniques, pages 195–206, 2007. 3, 9, 10

[15] B. Wang, H. Deng, and N. Holzschuch. Real-time glints
rendering with pre-filtered discrete stochastic microfacets.
Computer Graphics Forum, 39(6):144–154, 2020. 3

[16] B. Wang, M. Hašan, N. Holzschuch, and L.-Q. Yan.
Example-based microstructure rendering with constant stor-
age. ACM Transactions on Graphics (TOG), 39(5):1–12,
2020. 1, 2, 7, 8, 9

[17] B. Wang, L. Wang, and N. Holzschuch. Fast global illumi-
nation with discrete stochastic microfacets using a filterable
model. Computer Graphics Forum, 37(7):55–64, 2018. 2

[18] S. Werner, Z. Velinov, W. Jakob, and M. B. Hullin. Scratch
iridescence: Wave-optical rendering of diffractive surface
structure. ACM Transactions on Graphics (TOG), 36(6):1–
14, 2017. 2, 3

[19] L.-Q. Yan, M. Hašan, W. Jakob, J. Lawrence, S. Marschner,
and R. Ramamoorthi. Rendering glints on high-resolution
normal-mapped specular surfaces. ACM Transactions on
Graphics (TOG), 33(4):1–9, 2014. 2

[20] L.-Q. Yan, M. Hašan, B. Walter, S. Marschner, and R. Ra-
mamoorthi. Rendering specular microgeometry with wave
optics. ACM Transactions on Graphics (TOG), 37(4):1–10,
2018. 2

[21] L.-Q. Yan, M. Hašan, S. Marschner, and R. Ramamoorthi.
Position-normal distributions for efficient rendering of spec-
ular microstructure. ACM Transactions on Graphics (TOG),
35(4):1–9, 2016. 1, 2, 3, 4, 7, 8, 9, 10

[22] J. Zhu, Y. Xu, and L. Wang. A stationary svbrdf material
modeling method based on discrete microsurface. Computer
Graphics Forum, 38(7):745–754, 2019. 1, 2, 7, 8, 9

[23] T. Zirr and A. S. Kaplanyan. Real-time rendering of pro-
cedural multiscale materials. In Proceedings of the 20th
ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, pages 139–148, 2016. 3

