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Fig. 1. Using a diffusion model guided by a shuffle-based background consistency module and a specular prior reuse strategy, we generate relighting-consistent
and highlight-stable neural relighting materials from a single real-world material photograph.

Recovering high-fidelity spatially varying bidirectional reflectance distri-
bution function (SVBRDF) maps from a single image remains an ill-posed
and challenging problem, especially in the presence of saturated highlights.
Existing methods often fail to reconstruct the underlying texture in regions
overwhelmed by intense specular reflections. This kind of bake-in artifacts
caused by highlight corruption can be greatly alleviated by providing a series
of material images under different lighting conditions. To this end, our key
insight is to leverage the strong priors of diffusion models to generate images
of the same material under varying lighting conditions. These generated
images are then used to aid a multi-image SVBRDF estimator in recovering
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highlight-free reflectance maps. However, strong highlights in the input
image lead to inconsistencies across the relighting results. Moreover, tex-
ture reconstruction becomes unstable in saturated regions, with variations
in background structure, specular shape, and overall material color. These
artifacts degrade the quality of SVBRDF recovery. To address this issue, we
propose a shuffle-based background consistency module that extracts stable
background features and implicitly identifies saturated regions. This guides
the diffusion model to generate coherent content while preserving material
structures and details. Furthermore, to stabilize the appearance of generated
highlights, we introduce a lightweight specular prior encoder that estimates
highlight features and then performs grid-based latent feature translation,
injecting consistent specular contour priors while preserving material color
fidelity. Both quantitative analysis and qualitative visualization demonstrate
that our method enables stable neural relighting from a single image and
can be seamlessly integrated into multi-input SVBRDF networks to estimate
highlight-free reflectance maps.
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modeling.
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1 Introduction

Estimating spatially varying bidirectional reflectance distribution
function (SVBRDF) maps from images is a core problem in appear-
ance modeling. Such maps enable realistic rendering, material edit-
ing, and content creation, but manual design or controlled capture
remains costly in terms of time and labor.

To reduce acquisition cost, recent deep learning methods recover
SVBRDFs from images captured with a phone flash. Multi-image
approaches [Deschaintre et al. 2019; Gao et al. 2019; Guo et al. 2020;
Luo et al. 2024b] exploit viewpoint and lighting variations to enlarge
receptive fields and mitigate saturated highlights via redundancy,
yielding robustness under strong specularities. However, their re-
liance on calibrated multi-view or multi-light capture increases
acquisition complexity and reduces practicality.

Single-image methods [Guo et al. 2023; Luo et al. 2024a; Zhou
and Kalantari 2022] further ease capture but often fail under strong
highlights, where sensor saturation hides diffuse textures. Conse-
quently, predicted SVBRDF maps contain baked-in patterns and
yield artifacts under novel illumination.

Early work by Henzler et al. [2021] exploited material stationarity,
using self-similarity to inpaint highlight-corrupted regions and par-
tially alleviate bake-in artifacts. Guo et al. [2021] instead proposed
a highlight-aware dual-stream network, but the limited generative
capacity of convolutional neural networks prevents hallucinating
plausible structure in large saturated areas.

In this paper, we explore a way that integrates single-image input
to recover clean SVBRDF maps. Our key insight is to synthesize
diverse relighting observations of the same material by leveraging
the strong priors of a diffusion model [Rombach et al. 2022; Zhang
et al. 2023]. These relighting images provide rich, complementary
supervision for multi-image SVBRDF estimators. However, due to
the inherent stochasticity of diffusion models, the different gener-
ated material images always suffer from structural inconsistencies,
especially the texture fluctuation in the original highlight regions.

To address this, we condition the diffusion model on disentan-
gled material features, separating diffuse (background) and specular
(highlight) components. We further introduce a shuffle-based back-
ground consistency module that learns stable background features
while implicitly marking saturated regions, guiding the model to
generate coherent textures in highlight-dominated areas.

As background features enhance structural consistency, we in-
troduce a specular prior encoder that extracts implicit highlight
features from the input and translates them according to lighting
positions. This latent prior stabilizes highlights, and preserves back-
ground chromaticity, reducing color inconsistencies.

The material background and highlight features are fused via
channel-wise attention and injected into a ControlNet [Zhang et al.
2023] to guide spatially consistent, lighting-stable, and color-faithful
relighting. Combined with any multi-image SVBRDF framework,
our method enables high-resolution SVBRDF recovery from a single
image without baked-in highlights.

We validate our method on synthetic [Deschaintre et al. 2018; Vec-
chio and Deschaintre 2024] and real-world [Guo et al. 2020] material
datasets against a state-of-the-art neural relighting baseline [Bieron
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et al. 2023]. Quantitative and qualitative results show that our frame-

work significantly improves SVBRDF recovery under strong high-

lights and generalizes across diverse materials. Code and pretrained

models are available at https://github.com/xingyouxin/DGRSISE.
Our contributions can be summarized as follows:

e A novel ControlNet architecture based on stable diffusion
generates relighting images under varying lighting positions,
and can be integrated with pre-trained multi-image SVBRDF
estimators to recover high-fidelity SVBRDF maps.

o A shuffle-based background consistency module that learns
stable background features and provides implicit highlight
region marks to remove baked-in artifacts.

e A specular prior reuse strategy that extracts highlight fea-
tures and injects highlight priors, preserving both consistent
specular and background color.

2 Related Work

This section reviews relevant work on neural relighting and surface
SVBRDFs estimation.

2.1 Neural Relighting

Neural relighting methods fall into two categories: direct image-
to-image mapping, which maps inputs to relighting results, and
decomposition-based methods, which reconstruct geometry, mate-
rials, and lighting to improve consistency and editability.

Direct image-to-image methods. Early relighting methods cap-
tured dense reflectance fields under controlled illumination [De-
bevec et al. 2000], requiring specialized hardware. Neural methods
now dominate by mapping images to relighting results. IC-Light
[Zhang et al. 2025] fine-tunes a full-parameter conditional diffu-
sion model with high training cost. DiLightNet [Zeng et al. 2024b]
leverages ControlNet for efficient fine-tuning and radiance-guided
illumination. Neural Gaffer [Jin et al. 2024] builds voxel-based scene
representations for improved 3D consistency. In the field of surface
materials, Bieron et al. [2023] proposed the first single-image neu-
ral relighting method, using residual and specular-aware modules
without geometry or BRDF priors. Our method also targets material
relighting, distinguished by introducing a feature extractor that
disentangles background and highlights for robust conditioning.

Decomposition-based methods. Zeng et al. [2023] extend Neural
Radiance Fields (NeRF) [Mildenhall et al. 2021] with shadow and
highlight hints for realistic multi-view relighting. For single images,
Zhu et al. [2022] use differentiable path tracing to jointly recover
geometry, materials, and lighting, but at high computational cost.
RGB&X [Zeng et al. 2024a] employs diffusion priors to separate
reflectance and irradiance, enabling multimodal relighting and edit-
ing. DiffusionRenderer [Liang et al. 2025] integrates video diffusion
with neural fields, exploiting generative priors for robust forward
and inverse rendering under complex materials and lighting.

2.2 Surface SVBRDF Estimation

For brevity, we focus on images captured using lightweight devices
(e.g., smartphones, tablets).
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Fig. 2. Overview of our training and inference pipeline. Training: Given a batch of input images, we extract stable background features using the proposed (b)
shuffle-based background consistency module (Section 4.1). In parallel, we use (c) a specular prior reuse strategy to translate highlight features I (encoded
from the input Iy) to novel lighting positions (Section 4.2). These two types of features are fused via a channel attention mechanism (AFS [Guo et al. 2021]) and
injected into ControlNet [Zhang et al. 2023], providing structured and disentangled guidance for diffusion-based generation. Additionally, explicit information
about the light vector, view vector, and their half vector [Bieron et al. 2023] is embedded into the cross-attention layers of the diffusion model using (d) an
IP-Adapter mechanism [Ye et al. 2023], enabling precise and controllable illumination conditioning. Inference: Our method starts from a single input image
I. Under different light and view positions, we use (a) a consistency material encoder without feature shuffle to extract features. These features guide the
diffusion model to generate diverse neural material relighting results. By integrating with (e) a multi-input SVBRDF estimator [Luo et al. 2024b], it enables the

reconstruction of high-quality SVBRDF maps.

Single-input SVBRDF recovery. Single-image SVBRDF estimation
is convenient but ill-posed due to limited shading cues. Most meth-
ods use data-driven networks to infer reflectance from RGB inputs.

CNN-based methods leverage spatial priors for high-fidelity re-
construction, exploiting local self-similarity [Aittala et al. 2016;
Henzler et al. 2021] and data augmentation [Li et al. 2017; Ye et al.
2018]. Highlight-aware modules [Guo et al. 2021], meta-learning
[Zhou and Kalantari 2022], and gradient-based reflectance predic-
tion [Luo et al. 2024a] further improve robustness. While preserving
fine details, these methods are less effective for diverse material
generation.

GAN-based methods employ adversarial learning to enhance
generative diversity and conditional editing [Vecchio et al. 2021;
Wen et al. 2022; Zhao et al. 2020; Zhou et al. 2022]. They offer higher
editing flexibility but suffer from unstable training.

Diffusion-based methods offer strong generative priors and sup-
port multimodal guidance for diverse, controllable material syn-
thesis. Vecchio et al. [2024] integrate CLIP-style conditioning with
ControlNet to preserve spatial details, while Sartor and Peers [2023]

(MatFusion) introduce a flexible fine-tuning strategy updating only
input layers. Despite their strong generative power, diffusion meth-
ods still struggle with strong highlights. Our consistency material
encoder improves robustness under such conditions.

Multi-input SVBRDF recovery. Multi-view and multi-light inputs
improve robustness to strong highlights. Early methods handle vary-
ing inputs via specialized networks [Deschaintre et al. 2019]. Others
use cascaded networks for direct reflectance estimation [Kim et al.
2017]. Some exploit geometric priors, such as surface normals, to
improve accuracy [Boss et al. 2020]. Material GAN [Guo et al. 2020]
estimates SVBRDF from sparse images without extra priors by opti-
mizing in a latent reflectance space. Recently, Luo et al. [2024b] use
a graph convolutional network to capture cross-view correlations.
They refine results with optimization-based fine-tuning. We adopt
their pre-trained model as our SVBRDF estimator.

3 Neural Material Relighting Framework

Under strong lighting, single-image SVBRDF reconstruction often
fails in highlight regions due to insufficient pixel information. These
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Fig. 3. Architecture of our proposed shuffle-based background consistency module. This figure illustrates the full pipeline for extracting stable background
features (left), which consists of the HA-Branch and MD-Branch. It also depicts the intra-batch shuffling process used during training only to improve learning
capacity and enforce consistency across features extracted from different lighting conditions (middle). The right part shows the details of the MD convolution.
Here, ® denotes element-wise multiplication. IN indicates instance normalization. X!, X/*! represent the input and output of the I-th layer, respectively.

bake-in artifacts are reduced when images under varying highlights
are available. To address this, we propose a neural material relighting
framework. It synthesizes high-quality relighting images at diverse
lighting and views from a single input, which can then be used for
SVBRDF recovery.

Our framework is based on a ControlNet diffusion model with
multi-modal conditioning. It has two key components. First, a con-
sistency material encoder (Fig. 2 (a)) extracts disentangled represen-
tations of lighting and background to guide diffusion. Second, an
IP-Adapter [Ye et al. 2023] (Fig. 2 (d)) encodes text and view/lighting
conditions and injects them via cross-attention.

Inference pipeline. At inference, the framework takes three in-
puts: a single captured material image, a text prompt, and novel
view/lighting positions. The consistency material encoder extracts
stable background features and predicts a specular prior for the tar-
get light (Fig. 2, middle). These features are combined with a noise
latent and passed to ControlNet. Text and view/lighting information
are encoded by pretrained encoders and injected via cross-attention.
Guided by these conditions, the diffusion model iteratively denoises
to produce relighting results. Finally, the input image and seven
relighting outputs are fed into Luo et al. [2024b]’s multi-image
SVBRDF estimator to recover SVBRDF maps.

Training pipeline. The original ControlNet encoder is designed for
low-level conditions such as normals, depth, or edges. It struggles
with semantically richer inputs, like material images with strong
specular highlights. To address this, we decouple background struc-
ture and highlight information, then recombine them in a task-aware
way. During training, each batch contains renderings from the same
SVBRDF maps under varying views and lighting (Fig. 2, left). The
consistency material encoder has two parallel branches: the shuffle-
based background consistency module (Section 4.1) and the specular
prior reuse strategy (Section 4.2).

The capture setup of the material image follows the configuration
in Aittala et al. [2015]. Light and view directions are parameterized
by their position vectors and the half-vector. During training, light
positions are randomly sampled within x,y € [—4,4] and z € [4, 8]
above the material plane. The view position is constrained above the
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material center with random height z € [4, 8]. An image encoder,
trained jointly with the main network, extracts their features. For
SVBRDF decomposition, we follow Luo et al. [2024b], using the
Cook-Torrance microfacet BRDF [Cook and Torrance 1982] with
the GGX normal distribution [Walter et al. 2007]. The SVBRDF is
represented by four maps: diffuse albedo, surface normal, roughness,
and specular albedo.

4 Consistency Material Encoder

Generating high-quality relighting under varying highlights re-
quires accurate conditioning for consistent backgrounds and stable
highlights. We address this with a material-specific feature extractor,
the consistency material encoder. Inspired by rendering shading
models, we decompose diffuse (background) and specular (high-
light) components using a dual-branch network. The two streams
disentangle features, which are fused via channel-wise attention
[Guo et al. 2021] into a unified representation. This fused feature
provides reliable priors for the diffusion model, producing stable
and coherent relighting.

4.1 Shuffle-Based Background Consistency Module

Strong specular highlights in the input material image obscure
underlying textures, making reliable background extraction difficult.
To address this, we design a module for learning stable material
backgrounds and implicit highlight marks under varying lighting,
along with a shuffle-based training strategy (Fig. 3, middle). During
training, a batch of images {Ii € RBXCXHXW |4 ¢ [o, B)} of the same
material under different lights is used. The module learns to extract
consistent background features, where B is the batch size, C the
number of channels, and H, W the spatial resolution.

Our architecture adapts the highlight-aware (HA) convolution
and HA-Branch (Fig. 3, left) proposed by Guo et al. [2021], and in-
troduces a material decomposition (MD) convolution (Fig. 3, right)
and MD-Branch (Fig. 3, left). The MD convolution generates atten-
tion maps via a sigmoid activation, M = o(Conv(F)), to modulate
features and emphasize highlight-related activations: Fou = F - M.
The HA convolution has the same structure but adds an Inception
component with two tracks: one 3 X 3 convolution, the other two;



channels are halved and concatenated [Guo et al. 2021]. The Incep-
tion preserves global information but can reintroduce highlights.
Without it, the MD-Branch focuses on stable background features.
With it, the HA-Branch tends to predicts specular highlight regions.

By encoding features through both HA and MD branches, the
network separates highlight cues from diffuse structure. The HA-
Branch localizes specular highlights, while the MD-Branch pre-

serves geometric and textural consistency across lighting. The branches

produce complementary features, which are concatenated and fused
via the attention-based feature selection (AFS) [Guo et al. 2021].
The visualizations in Fig. 4 show the structure and texture of the
extracted feature (b, ) and the specular highlight regions (c, f).

Feature shuffle. A set of material images from a fixed viewpoint
under varying lighting share the same meso-scale geometry and
structure but show different shading. To exploit this, we adopt a
shuffle strategy that lets the network perceive shared appearance
features during training, improving learning and generalization.
The feature shuffle is applied only during training.

As shown in Fig. 3, a batch of training images {I; } is first processed
by the background consistency encoder (BCE) to extract background
features {b;}, where b; = BCE(I;). The features are then shuffled
by the feature shuffle operation (FS) to produce {b}, where b] =
FS(b;). This breaks the one-to-one correspondence between images
and features, encouraging the network to learn stable background
structures from a broader context during training.

Due to the non-generative nature of BCE, large specular high-
lights can partially obscure local features. To address this, we in-
troduce auxiliary highlight marks to implicitly guide the diffusion
model in generating coherent content within these regions (Fig. 4 (c,
f)). This helps the model recover missing background and mitigate
highlight bake-in artifacts. Validation results are in Section 6.3.

4.2 Specular Prior Reuse Strategy

We propose a specular prior reuse strategy to address limitations of
using the shuffle-based background consistency module alone. With-
out it, the diffusion model’s latent representation lacks explicit spec-
ular highlight information and comprehensive background color
priors. As a result, the model relies on learned statistics, causing
inconsistent highlights and color shifts that deviate from the input.

To mitigate these issues, we reuse features extracted by a specular
prior encoder from the input image, denoted as [y. This encoder
uses only the MD-Branch. The process is illustrated in Fig. 2 (c).
During training, [, is translated based on the given light positions,
producing a set of features ; for i € [1, B). Missing regions are filled
using boundary values.

We employ the instance normalization (IN) branch in the MD
convolution (Fig. 3, right) to enable the specular prior encoder to
learn structural features more effectively. In parallel, the sigmoid
branch predicts the probability of specular highlight regions. The
element-wise product of these two branches yields features that
preserve background information while capturing the highlight con-
tours. Although feature translation may misalign the color features
with the input at the pixel level, the diffusion model can still utilize
these priors to reconstruct approximate color distributions. The
effectiveness of this strategy is shown in Section 6.3.
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5 Implementation Details

Dataset. We train on the MatSynth dataset [Vecchio and Deschain-
tre 2024], containing 3,980 high-resolution (2,048 X 2,048) material
samples across categories like wood, terracotta, stone, plastic, mar-
ble, and fabric. Before training, each material is randomly scaled
and cropped to generate 102,600 unique 512 x 512 SVBRDF variants.
During training, the maps are rendered with the Cook-Torrance
model under the view and lighting setups in Section 3.

Training and inference. We finetune the pre-trained Stable Dif-
fusion 2.1 [Rombach et al. 2022] with ControlNet using Diffusers
[von Platen et al. 2022] and the Adam optimizer on a single Nvidia
H100 GPU. The learning rate is 5e-6 with batch size 8. Training
runs on 512 X 512 resolution for 850,000 batches with mean square
error (MSE) loss, taking about 5 days. At runtime, inference takes
1.6 seconds per image with a 20-step DDPM scheduler. Classifier-
free guidance (CFG) [Ho and Salimans 2022] scale is 1, and other
hyperparameters use Diffusers defaults.

For fairness, we retrained Bieron et al. [2023] using the same
dataset, resolution, and view/lighting sampling as our method.

6 Results

In this section, we compare the quality of neural material relighting
produced by our method against prior methods and demonstrate its
improvements in single-image SVBRDF reconstruction.

6.1 Comparison on Neural Material Relighting

We compare our method with Bieron et al. [2023], the current state-
of-the-art in neural material relighting. Quantitative results are sum-
marized in Table 1. For each material in INRIA [Deschaintre et al.
2018] (40), MatSynth [Vecchio and Deschaintre 2024] (89), and real-
world [Guo et al. 2020] (38) test sets, we generate seven relighting
results under varying lights. Reconstruction errors are computed us-
ing MSE, root mean square error (RMSE), peak signal-to-noise ratio
(PSNR), and learned perceptual image patch similarity (LPIPS). Av-
eraged across all cases, our method outperforms Bieron et al. [2023]
across INRIA and Real-world datasets, showing higher numerical
accuracy and quality. Bieron et al. [2023] slightly outperforms our

(e)

Fig. 4. Features extracted by the ST-Branch and MD-Branch from the input
images. (a, d) show the input images; (b, e), and (c, f) show the channel-wise
averaged visualizations of background structures and specular marks.
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method on LPIPS for the MatSynth dataset, which contains more
high-frequency details. Our method, limited by partial fine-tuning
of the stable diffusion model, lacks such high-frequency details.

Table 1. Comparison of neural material relighting between our method and
Bieron et al. [2023], with the best results per dataset highlighted in bold.

Dataset Method MSE| RMSE| PSNR{ LPIPS|
Bieron 0011 0.099 204  0.182
INRIA Ours  0.006 0.070 22.9  0.147
Bieron 0012 0103 199 0213
MatSynth — “5 ¢ 0.009 0089 209 0244
Real-world Bieron 0.018 0.126 18.6 0.210

Ours 0.014 0.112 19.2 0.166

Fig. 6 provides visual comparisons under novel lighting. The first
four materials are real-world [Guo et al. 2020], and the last two
are synthetic from INRIA and MatSynth. Bieron et al. [2023] shows
noticeable bake-in artifacts in highlight regions due to overfitting
to the input lighting, especially under strong light. In contrast, our
method is robust to highlight artifacts and produces stable, plausible
specular responses, yielding relighting closer to the ground truth.

6.2 Improvements in Single-Image SVBRDF Recovery

We adopt the pretrained network of Luo et al. [2024b] as the multi-
image SVBRDF estimator. A single input image and seven synthetic
relighting images are fed into this estimator to recover SVBRDF
maps. These maps are rendered under 128 view/lighting conditions
for synthetic datasets and 7 for real-world data. Using this pipeline,
we compare SVBRDF reconstruction quality against Bieron et al.
[2023] and MatFusion [Sartor and Peers 2023] on both synthetic
and real images. For baselines, we also evaluate Luo et al. [2024b]
with (i) 1 ground-truth (GT) rendering input (baseline) and (ii) 8 GT
rendering inputs (reference).

Table 2 presents the quantitative comparison. Our method con-
sistently outperforms Bieron et al. [2023] and MatFusion [Sartor
and Peers 2023] across most metrics except the LPIPS of the Mat-
Synth dataset. And the reconstruction quality of our results lies
between those achieved by the 1 GT and 8 GT input settings. Fig.
9 shows qualitative results: the first four materials are from real-
world datasets, while the last two are drawn from the INRIA and
MatSynth datasets. For specular materials, our recovered SVBRDFs
are cleaner than both the 1 GT baseline and Bieron et al. [2023], and
the rendered results more closely approximate those of the 8 GT
reference and the synthetic GT. This demonstrates that our neural
material relighting strategy can effectively enhance single-image
SVBRDF reconstruction by enabling multi-image estimators.

Fig. 7 shows a qualitative comparison between our method, Mat-
Fusion [Sartor and Peers 2023], and LGD [Luo et al. 2024a]. Our
method is robust to both spatially broad and strong specular high-
lights, recovering SVBRDFs that are free from highlight pollution.
In contrast, due to intense lighting effects, MatFusion and LGD
often produce baked-in highlights at the center of the estimated
maps, resulting in visible artifacts in the relighting renderings. This
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Table 2. Reconstruction and rendering error comparison between our
method and others. SVBRDF maps are evaluated using MSE, and render-
ings are assessed with PSNR and LPIPS. D, N, R, S, and Ren. denote diffuse,
normal, roughness, specular, and re-rendered results, respectively. For each
dataset, the best results are in bold and the second-best are underlined.
N/A indicates results not applicable, as ground-truth SVBRDF maps are
unavailable for the real-world dataset.

MSE| PSNRT LPIPS|

D N R S Ren. Ren.

Bieron 0.011  0.005 0.050 0.038 20.0 0.206

MatFusion  0.007 0.004 0.068 0.015 19.1 0.253

INRIA Ours 0.006 0.003 0.018 0024 229  0.187
1GT 0.008 0.006 0.020 0.014 21.4 0.206

8 GT 0.003 0.001 0.006 0.009 27.8 0.085

Bieron 0.019  0.009 0.043 0.074 20.1 0.249

MatFusion 0.018  0.009 0.080 0.078 18.7 0.239

MatSynth Ours 0.017  0.008 0.018 0.068 20.5 0.312
1GT 0.018 0.012 0.030 0.079 20.4 0.270

8 GT 0.012 0.003 0.010 0.038 25.1 0.107

Bieron N/A N/A N/A NA 18.4 0.226

MatFusion N/A  N/A  N/A N/A 15.8 0.282

Real-world Ours N/A  N/A N/A NA 19.5 0.199
1GT N/A  N/A N/A NA 18.4 0.233

8GT N/A  N/A N/A NA 22.1 0.164

Dataset Method

demonstrates that the ability of our method to handle specular high-
lights arises from the specialized network design rather than from
the diffusion model.

6.3 Ablation Study

We use the original ControlNet encoder as the baseline (Ori. CtrINet)
and compare it against our full method and several ablated variants.
For evaluation, each method generates seven neural material relight-
ing results per sample on the MatSynth test set, which contains 89
samples. We compute MSE, RMSE, PSNR, structural similarity index
measure (SSIM), and LPIPS between the relighting results and their
ground truth. Detailed numerical results are reported in Table 3. To
better illustrate the perceptual differences between the relighting
results and the ground truth, we further employ the ILIP metric
[Andersson et al. 2020] for visual error quantification. A full visual
comparison is presented in Fig. 8.

The effect of the shuffle-based BCE.. In Fig. 8, we compare relight-
ing results with SBCE (ours) and without it (w/o SBCE), where SBCE
consists of both shuffling and the BCE module. The inclusion of
this module leads to significantly improved preservation of the ex-
ample material’s inherent grid-like texture patterns and base color
characteristics. This improvement arises from the module’s design:
by leveraging a shuffle strategy, the MD and HA branches jointly
capture the global structural context of the material background,
which serves as a stable conditioning signal for the diffusion-based
relighting process.

The effect of the HA and MD convolution. To evaluate the effect of
HA and MD convolutions, we replace all convolution layers with
standard convolutions and denote this variant as w/o HA&MD. As
shown in Fig. 8, using only standard convolutions leads to a sig-
nificant degradation in the material’s base color fidelity. This is
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primarily because the absence of Inception and IN modules in the
HA and MD slows color learning convergence. Second, the use of a
shuffling strategy disrupts color features by swapping their order,
causing the network to focus on easier-to-learn global structures
and neglect color information. In addition, relying solely on stan-
dard convolutions results in baked-in artifacts at the center of the
relighting output.

The effect of the specular prior reuse strategy. We assess the effec-
tiveness of the specular prior reuse strategy by comparing relighting
results with specular prior (ours) and without it (w/o S. Prior). As
shown in Table 3 and Fig. 8, incorporating the specular prior leads to
more faithful highlight placement and shape, with background color
more closely aligned with the ground truth. These improvements
indicate that the specular prior encoder successfully captures the
global background features and implicit highlight contours, provid-
ing enhanced conditioning for relighting.

Table 3. Numerical evaluation of our full method and ablated variants for
neural material relighting. The best results are highlighted in bold.

Method ~ MSE] RMSE] PSNR{ SSIM{ LPIPS|

Ori. CtrlNet  0.030 0.159 15.9 0.388 0.327
w/o SBCE 0.023 0.141 17.0 0.227 0.525
w/o HA&MD  0.018 0.120 18.6 0.421 0.299
w/o S. Prior ~ 0.010 0.090 20.7 0.434 0.288
Ours 0.009 0.089 20.9 0.442 0.244

Relighting images and the convergence accuracy of SVBRDF.. We
compare SVBRDF re-rendering results using 1, 4, and 8 relighting
inputs, as shown in Table 4. Increasing the number of relighting
images leads to improved SVBRDF convergence accuracy.

Relighting robustness to input parameters. When capturing ma-
terial input images in real-world conditions, physical constraints
inevitably introduce a positional discrepancy between the actual
view/lighting configuration and the nominal setup provided to the
network. To evaluate the sensitivity to such deviations, we conduct
robustness tests. As shown in Fig. 5, our relighting is robust to light-
ing angles (0°-32°), light distances (4-8 units), and camera angles
0°-32°).

Table 4. Effect of the number of relighting inputs on re-rendering results,
evaluated on the INRIA dataset. The best results are highlighted in bold.

Method MSE] PSNRfT LPIPS|

1-input  0.0075 21.36 0.2059
4-input  0.0057 22.46 0.1874
8-input 0.0052 22.88 0.1868

6.4 Limitations and Discussion

We have identified several limitations. First, the large scale of the
Stable Diffusion 2.1 and ControlNet models makes training resource-
intensive, requiring over 30 GB of VRAM and significant training
time. For inference, efficiency is heavily bottlenecked by high res-
olutions and the denoising steps. Second, due to the regularizing
effect of the KL divergence in the VAE framework [Wang et al.
2023] and partial parameter fine-tuning, the diffusion model tends
to attenuate high-frequency details during generation. This leads
to visibly reduced contrast and a lack of fine-grained textural fi-
delity, particularly for diffuse materials. Finally, our relighting is
confined to a limited set of view/lighting conditions and does not
support dynamic changes in illumination intensity. While this de-
sign choice limits expressiveness, it greatly simplifies training and
provides enough inductive priors that facilitate effective SVBRDFs
disentanglement.

7 Conclusion

In this paper, we present a novel framework for high-fidelity neural
material relighting. The core of our approach consists of a shuffle-
based BCE and a specular prior reuse strategy. We introduce MD-
Branch that captures background structural feature, and HA-Branch
that predicts specular region marks, both of which provide reliable
conditioning signals to the ControlNet for stable guidance. The
shuffle strategy enhances the model’s awareness of global material
geometry and structural context. Additionally, our specular prior
reuse strategy injects learned highlight contours into new spatial lo-
cations and preserves material color priors, significantly improving
relighting quality. Benefiting from these components, our frame-
work demonstrates strong robustness to intense specularities across
both real and synthetic datasets.

Conference acronym "XX, June 03-05, 2018, Woodstock, NY.
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Future work may explore full fine-tuning or adopting stronger
base models to improve resolution, detail fidelity. Another direction
lies in extending the material model to better support complex
recovery cases such as car paint and beetle shells, which exhibit
anisotropic or multilayered reflectance.
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